Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur Radiol Exp ; 8(1): 46, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594558

RESUMO

BACKGROUND: Monitoring pyruvate metabolism in the spleen is important for assessing immune activity and achieving successful radiotherapy for cervical cancer due to the significance of the abscopal effect. We aimed to explore the feasibility of utilizing hyperpolarized (HP) [1-13C]-pyruvate magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) to evaluate pyruvate metabolism in the human spleen, with the aim of identifying potential candidates for radiotherapy in cervical cancer. METHODS: This prospective study recruited six female patients with cervical cancer (median age 55 years; range 39-60) evaluated using HP [1-13C]-pyruvate MRI/MRS at baseline and 2 weeks after radiotherapy. Proton (1H) diffusion-weighted MRI was performed in parallel to estimate splenic cellularity. The primary outcome was defined as tumor response to radiotherapy. The Student t-test was used for comparing 13C data between the groups. RESULTS: The splenic HP [1-13C]-lactate-to-total carbon (tC) ratio was 5.6-fold lower in the responders than in the non-responders at baseline (p = 0.009). The splenic [1-13C]-lactate-to-tC ratio revealed a 1.7-fold increase (p = 0.415) and the splenic [1-13C]-alanine-to-tC ratio revealed a 1.8-fold increase after radiotherapy (p = 0.482). The blood leukocyte differential count revealed an increased proportion of neutrophils two weeks following treatment, indicating enhanced immune activity (p = 0.013). The splenic apparent diffusion coefficient values between the groups were not significantly different. CONCLUSIONS: This exploratory study revealed the feasibility of HP [1-13C]-pyruvate MRS of the spleen for evaluating baseline immune potential, which was associated with clinical outcomes of cervical cancer after radiotherapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT04951921 , registered 7 July 2021. RELEVANCE STATEMENT: This prospective study revealed the feasibility of using HP 13C MRI/MRS for assessing pyruvate metabolism of the spleen to evaluate the patients' immune potential that is associated with radiotherapeutic clinical outcomes in cervical cancer. KEY POINTS: • Effective radiotherapy induces abscopal effect via altering immune metabolism. • Hyperpolarized 13C MRS evaluates patients' immune potential non-invasively. • Pyruvate-to-lactate conversion in the spleen is elevated following radiotherapy.


Assuntos
Ácido Pirúvico , Neoplasias do Colo do Útero , Humanos , Feminino , Pessoa de Meia-Idade , Ácido Pirúvico/metabolismo , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Estudos Prospectivos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Lactatos
2.
Diagnostics (Basel) ; 13(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443541

RESUMO

The aim of this study was to explore the potential of magnetic resonance fingerprinting (MRF), an emerging quantitative MRI technique, in measuring relaxation values of female pelvic tissues compared to the conventional magnetic resonance image compilation (MAGiC) sequence. The study included 32 female patients who underwent routine pelvic MRI exams using anterior and posterior array coils on a 3T clinical scanner. Our findings demonstrated significant correlations between MRF and MAGiC measured T1 and T2 values (p < 0.0001) for various pelvic tissues, including ilium, femoral head, gluteus, obturator, iliopsoas, erector spinae, uterus, cervix, and cutaneous fat. The tissue contrasts generated from conventional MRI and synthetic MRF also showed agreement in bone, muscle, and uterus for both T1-weighted and T2-weighted images. This study highlights the strengths of MRF in providing simultaneous T1 and T2 mapping. MRF offers distinct tissue contrast and has the potential for accurate diagnosis of female pelvic diseases, including tumors, fibroids, endometriosis, and pelvic inflammatory disease. Additionally, MRF shows promise in monitoring disease progression or treatment response. Overall, the study demonstrates the potential of MRF in the field of female pelvic organ imaging and suggests that it could be a valuable addition to the clinical practice of pelvic MRI exams. Further research is needed to establish the clinical utility of MRF and to develop standardized protocols for its implementation in clinical practice.

3.
Sensors (Basel) ; 22(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897987

RESUMO

Hyperpolarized carbon-13 MRI has the advantage of allowing the study of glycolytic flow in vivo or in vitro dynamically in real-time. The apparent exchange rate constant of a metabolite dynamic signal reflects the metabolite changes of a disease. Downstream metabolites can have a low signal-to-noise ratio (SNR), causing apparent exchange rate constant inconsistencies. Thus, we developed a method that estimates a more accurate metabolite signal. This method utilizes a kinetic model and background noise to estimate metabolite signals. Simulations and in vitro studies with photon-irradiated and control groups were used to evaluate the procedure. Simulated and in vitro exchange rate constants estimated using our method were compared with the raw signal values. In vitro data were also compared to the Area-Under-Curve (AUC) of the cell medium in 13C Nuclear Magnetic Resonance (NMR). In the simulations and in vitro experiments, our technique minimized metabolite signal fluctuations and maintained reliable apparent exchange rate constants. In addition, the apparent exchange rate constants of the metabolites showed differences between the irradiation and control groups after using our method. Comparing the in vitro results obtained using our method and NMR, both solutions showed consistency when uncertainty was considered, demonstrating that our method can accurately measure metabolite signals and show how glycolytic flow changes. The method enhanced the signals of the metabolites and clarified the metabolic phenotyping of tumor cells, which could benefit personalized health care and patient stratification in the future.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Cinética , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído
4.
Diagnostics (Basel) ; 11(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34679545

RESUMO

We aim to assess the additional value of diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy (MRS) for the risk stratification of sonographically indeterminate ovarian neoplasms. A total of 21 patients with diagnosed adnexal masses between 2014 and 2017 were divided into malignant (four serous cystadenocarcinomas, four endometrioid carcinomas, three clear cell carcinomas, and one carcinosarcoma) and benign (four cystadenomas, two teratomas, one fibroma, one endometrioma, and one corpus luteal cyst) groups. An apparent diffusion coefficient (ADC) value of 1.27 × 10-3 mm2/s was considered as the optimal threshold in distinguishing malignant from benign ovarian tumors (sensitivity and specificity: 100% and 77.8%, respectively). Choline peaks were detected in six of seven O-RADS (Ovarian-Adnexal Imaging-Reporting Data System) 4 lesions and corrected all of the DWI false-negative clear cell carcinoma. Based on the presence of the choline peaks, the diagnostic performance of MRS showed a sensitivity of 77.8%, a specificity of 100%, and an accuracy of 85.7%, respectively. In conclusion, MRS could potentially play a complementary role for DWI in tumor characterization, particularly for O-RADS 4 tumors or clear cell carcinomas.

5.
Metabolites ; 11(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34436459

RESUMO

Alterations in metabolism following radiotherapy affect therapeutic efficacy, although the mechanism underlying such alterations is unclear. A new imaging technique-named dynamic nuclear polarization (DNP) carbon-13 magnetic resonance imaging (MRI)-probes the glycolytic flux in a real-time, dynamic manner. The [1-13C]pyruvate is transported by the monocarboxylate transporter (MCT) into cells and converted into [1-13C]lactate by lactate dehydrogenase (LDH). To capture the early glycolytic alterations in the irradiated cancer and immune cells, we designed a preliminary DNP 13C-MRI study by using hyperpolarized [1-13C]pyruvate to study human FaDu squamous carcinoma cells, HMC3 microglial cells, and THP-1 monocytes before and after irradiation. The pyruvate-to-lactate conversion rate (kPL [Pyr.]) calculated by kinetic modeling was used to evaluate the metabolic alterations. Western blotting was performed to assess the expressions of LDHA, LDHB, MCT1, and MCT4 proteins. Following irradiation, the pyruvate-to-lactate conversion rates on DNP 13C-MRI were significantly decreased in the FaDu and the HMC3 cells but increased in the THP-1 cells. Western blot analysis confirmed the similar trends in LDHA and LDHB expression levels. In conclusion, DNP 13C-MRI non-invasively captured the different glycolytic alterations among cancer and immune systems in response to irradiation, implying its potential for clinical use in the future.

6.
Int J Toxicol ; 40(4): 355-366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33944624

RESUMO

Per- and polyfluorinated alkyl substances (PFAS) are ubiquitous, persistent, and toxic chemicals that pose public health risks. Recent carcinogenicity concerns have arisen based on epidemiological studies, animal tumor findings, and mechanistic data. Thousands of PFAS exist; however, current understanding of their toxicity is informed by studies of a select few, namely, perfluorooctanoic acid and perfluorooctanesulfonic acid. Hence, the computational, high-throughput screening tool, the US EPA CompTox Chemical Dashboard's ToxCast, was utilized to explore the carcinogenicity potential of PFAS. Twenty-three major PFAS that had sufficient in vitro ToxCast data and covered a range of structural subclasses were analyzed with the visual analytics software ToxPi, yielding a qualitative and quantitative assessment of PFAS activity in realms closely linked with carcinogenicity. A comprehensive literature search was also conducted to check the consistency of analyses with other mechanistic data streams. The PFAS were found to induce a vast range of biological perturbations, in line with several of the International Agency for Research on Cancer-defined key carcinogen characteristics. Patterns observed varied by length of fluorine-bonded chains and/or functional group within and between each key characteristic, suggesting some structure-based variability in activity. In general, the major conclusions drawn from the analysis, that is, the most notable activities being modulation of receptor-mediated effects and induction of oxidative stress, were supported by literature findings. The study helps enhance understanding of the mechanistic pathways that underlie the potential carcinogenicity of various PFAS and hence could assist in hazard identification and risk assessment for this emerging and relevant class of environmental toxicants.


Assuntos
Poluentes Ambientais/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Hidrocarbonetos Fluorados/toxicidade , Animais , Testes de Carcinogenicidade , Bases de Dados de Compostos Químicos , Hidrocarbonetos Fluorados/química , Estrutura Molecular
7.
Int J Oncol ; 54(2): 655-664, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30483770

RESUMO

The overall goal of the present study was to evaluate the chemotherapeutic and cancer­protective properties of D­erythro­sphingosine (sphingosine) and C2­ceramide using a human breast epithelial cell (HBEC) culture system, which represents multiple­stages of breast carcinogenesis. The HBEC model includes Type I HBECs (normal stem), Type II HBECs (normal differentiated) and transformed cells (immortal/non­tumorigenic cells and tumorigenic cells, which are transformed from the same parental normal stem cells). The results of the present study indicate that sphingosine preferentially inhibits proliferation and causes death of normal stem cells (Type I), tumorigenic cells, and MCF7 breast cancer cells, but not normal differentiated cells (Type II). In contrast to the selective anti­proliferative effects of sphingosine, C2­ceramide inhibits proliferation of normal differentiated cells as well as normal stem cells, tumorigenic cells, and MCF7 cancer cells with similar potency. Both sphingosine and C2­ceramide induce apoptosis in tumorigenic cells. Among the sphingosine stereoisomers (D­erythro, D­threo, L­erythro, and L­threo) and sphinganine that were tested, L­erythro­sphingosine most potently inhibits proliferation of tumorigenic cells. The inhibition of breast tumorigenic/cancer cell proliferation by sphingosine was accompanied by inhibition of telomerase activity. Sphingosine at non­cytotoxic concentrations, but not C2­ceramide, induces differentiation of normal stem cells (Type I), thereby reducing the number of stem cells that are more susceptible to neoplastic transformation. To the best of our knowledge, the present study demonstrates one of the first results that sphingosine can be a potential chemotherapeutic and cancer­protective agent, whereas C2­ceramide is not an ideal chemotherapeutic and cancer­protective agent due to its anti­proliferative effects on Type II HBECs and its inability to induce the differentiation of Type I to Type II HBECs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Mama/patologia , Neoplasias da Mama/patologia , Carcinogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
8.
Semin Cancer Biol ; 14(1): 13-21, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14757532

RESUMO

With an information explosion on the molecular mechanism of oncogenesis, the completion of the human genome sequence project, and the advances in genomic and proteomic methods, many therapeutic targets for various cancers have been identified. It is timely that a number of new drug development techniques have been developed in this last decade. Candidate drug targets can now be efficiently validated with RNA interference and transgenic animals studies. Combinatorial chemistry provides large numbers of chemical compounds for drug lead discovery and optimization. High throughput assays and high content cell-based assays, in conjunction with sophisticated robotics, are now available for screening large numbers of compounds. Based on X-ray crystallographic structure data, drug leads can be discovered through in silico screening of virtual libraries. By applying these various drug discovery techniques, it is anticipated that more potent and specific anti-cancer agents will be discovered within the next decade.


Assuntos
Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Técnicas de Química Combinatória , Desenho Assistido por Computador , Humanos
9.
Cancer Biol Ther ; 3(1): 96-101, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14726663

RESUMO

AG 879 has been widely used as a Tyr kinase inhibitor specific for ErbB2 and FLK-1, a VEGF receptor. The IC(50) for both ErbB2 and FLK-1 is around 1 microM. AG 879, in combination of PP1 (an inhibitor specific for Src kinase family), suppresses almost completely the growth of RAS-induced sarcomas in nude mice. In this paper we demonstrate that AG 879 even at 10 nM blocks the specific interaction between the Tyr-kinase ETK and PAK1 (a CDC42/ Rac-dependent Ser/Thr kinase) in cell culture. This interaction is essential for both the RAS-induced PAK1 activation and transformation of NIH 3T3 fibroblasts. However, AG 879 at 10 nM does not inhibit either the purified ETK or PAK1 directly in vitro, suggesting that this drug blocks the ETK-PAK1 pathway by targeting a highly sensitive kinase upstream of ETK. Although the Tyr-kinases Src and FAK are known to activate ETK directly, Src is insensitive to AG 879, and FAK is inhibited by 100 nM AG 879, but not by 10 nM AG879. The structure-function relationship analysis of AG 879 derivatives has revealed that both thio and tert-butyl groups of AG 879, but not (thio) amide group, are essential for its biological function (blocking the ETK-PAK1 pathway), suggesting that through the (thio) amide group, AG 879 can be covalently linked to agarose beads to form a bioactive affinity ligand useful for identifying the primary target of this drug.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Tirfostinas/farmacologia , Células 3T3 , Animais , Divisão Celular/efeitos dos fármacos , Ativação Enzimática , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Quinases Ativadas por p21 , Proteínas ras/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA